Algolia Search
Integrate Algolia Search with Fumadocs
Notice
If you're using Algolia's free tier, you have to display their logo on your search dialog.
Introduction
The Algolia Integration automatically configures Algolia Search for document search.
It creates a record for each paragraph in your document, it is also recommended by Algolia.
Each record contains searchable attributes:
Attribute | Description |
---|---|
title | Page Title |
section | Heading ID (nullable) |
content | Paragraph content |
The section
field only exists in paragraphs under a heading. Headings and
paragraphs are indexed as an individual record, grouped by their page ID.
Notice that it expects the url
property of a page to be unique, you shouldn't have two pages with the same
url.
Setup
Install dependencies:
npm install algoliasearch
Sign up on Algolia
Sign up and obtain the app id and API keys for your search. Store these credentials in environment variables.
Sync Search Indexes
Pre-render a static route /static.json
to export search indexes into production build:
import { source } from '@/lib/source';
import type { DocumentRecord } from 'fumadocs-core/search/algolia';
export async function exportSearchIndexes() {
const results: DocumentRecord[] = [];
for (const page of source.getPages()) {
results.push({
_id: page.url,
structured: page.data.structuredData,
url: page.url,
title: page.data.title,
description: page.data.description,
});
}
return results;
}
import { exportSearchIndexes } from '@/lib/export-search-indexes';
export const revalidate = false;
export async function GET() {
return Response.json(await exportSearchIndexes());
}
Make a script to sync search indexes:
import { algoliasearch } from 'algoliasearch';
import { sync, DocumentRecord } from 'fumadocs-core/search/algolia';
import * as fs from 'node:fs';
// the path of pre-rendered `static.json`, choose one according to your React framework
const filePath = {
next: '.next/server/app/static.json.body',
'tanstack-start': '.output/public/static.json',
'react-router': 'build/client/static.json',
waku: 'dist/public/static.json',
}['next'];
const content = fs.readFileSync(filePath);
const records = JSON.parse(content.toString()) as DocumentRecord[];
const client = algoliasearch('id', 'key');
// update the index settings and sync search indexes
void sync(client, {
indexName: 'document',
documents: records,
});
Now run the script after build:
{
"scripts": {
"build": "... && bun ./scripts/sync-content.ts"
}
}
Workflow
You may manually upload search indexes with the script, or integrate it with your CI/CD pipeline.
Search UI
You can consider different options for implementing the UI:
-
Using Fumadocs UI search dialog.
-
Build your own using the built-in search client hook:
import { liteClient } from 'algoliasearch/lite'; import { useDocsSearch } from 'fumadocs-core/search/client'; const client = liteClient('id', 'key'); const { search, setSearch, query } = useDocsSearch({ type: 'algolia', indexName: 'document', client, });
-
Use their official clients directly.
Options
Tag Filter
To configure tag filtering, add a tag
value to indexes.
import { source } from '@/lib/source';
import type { DocumentRecord } from 'fumadocs-core/search/algolia';
export async function exportSearchIndexes() {
const results: DocumentRecord[] = [];
for (const page of source.getPages()) {
results.push({
_id: page.url,
structured: page.data.structuredData,
url: page.url,
title: page.data.title,
description: page.data.description,
tag: '<your value>',
});
}
return results;
}
And update your search client:
-
Fumadocs UI: Enable Tag Filter on Search UI.
-
Search Client: You can add the tag filter like:
import { useDocsSearch } from 'fumadocs-core/search/client'; const { search, setSearch, query } = useDocsSearch({ tag: '<your tag value>', // ... });
The tag
field is an attribute for faceting. You can also use the filter tag:value
on Algolia search clients.
How is this guide?
Last updated on